Building All of Mathematics without Axioms An *n*-Categorical Manifesto

Sophie d'Espalungue

March 19, 2025

Building All of Mathematics without Axioms

An n-Categorical Manifesto

PhD Thesis work

- Operads in 2-categories and models of structure interchange
- Initiated by the need to
 - manage constructions involving large categories
 - describe more complex structures and symmetries

to understand the structure of *n*-fold iterated loop spaces.

Idea

- Define everything.
- Internalize type constructors
- Allow internal reasoning only.
- Capture all of dependencies through functoriality.

Timeline

Foundations of Logic and Mathematics

- Maths written in natural language.
- Axioms as proof-irrelevant truth.

```
    -350 Aristotle Logic
    -300 Euclide Axiomatization of Mathematics
    1666 Leibnitz Let's prove the axioms!
```

- Formalization of mathematical language.
- Boundary between axiom and definition fades away.

```
1847 Boole Logic
1883 Cantor Set Theory
1894 Peano Symbolic Language, Natural Numbers
1898 Hilbert Formal Systems
```

- Emergence of mathematical logic.
- Truth as deducibility within a coherent formal system.

```
1901 Russel's Paradox
1922 ZFC
1931 Gödel's incompleteness, Tarski's undefinability of truth
1942 Category Theory
```


Formal Systems

The Idea

- A formal system enables to deduce truth about things from simple truth about those things.
- Formally assume that
 - some statements hold (axioms)
 - some statements can be deduced from other (rules)
- Combine the rules to obtain syntactic consequences
 - Write $K \vdash J$ if J can be derived from K (proof tree)

• e.g.
$$\frac{J_1^1 \cdots J_1^{n_1}}{J_1} \cdots \frac{J_p^1 \cdots J_p^{n_p}}{J_p} \Rightarrow J_1^1 \cdots J_p^{n_p} \vdash J$$

• The results are valid for each object satisfying the axioms.

Mета l	Level	Model	FS	Expected truth value
0	Things	Objects	T, x	
1	Judgments	Statements	J	$\vdash J$
2	Rules	Hold	$\frac{J_1J_r}{I}$	$(\prod_i \vdash J_i) \Rightarrow (\vdash J)$
2	Axioms	Hold	\overline{A}	$\top \Rightarrow (\vdash A)$
3	Entailment	Hold	$\hat{K} \vdash J$	$(\vdash K) \Rightarrow (\vdash J) = \checkmark \circ \circ \circ$

Formal Systems

Entailment

Ultimately, we care about the derivability of judgments. Form a poset (\mathbb{J},\vdash)

- whose objects are concatenation of judgments: $\emptyset, J_1 \cdots J_r$
- whose order is generated by the rules in a way compatible with concatenation, so that

•
$$\mathbb{J}(J_1 \dots J_r, J) = J_1 \dots J_r \vdash J$$

$$\bullet \quad \prod_{i=1}^r \mathbb{J}\left(J_i^{\bullet}, J_i\right) \Rightarrow \mathbb{J}\left(J_1^{\bullet} \cdots J_r^{\bullet}, J_1 \cdots J_r\right) \qquad \quad \frac{J_1^1 \cdots J_1^{n_1}}{J_1} \cdots \frac{J_1^n \cdots J_r^{n_r}}{J_r}$$

Human interpretation of a deductive system:

$$\mathbb{J}(\varnothing, \underline{\ }) : (\mathbb{J}, \vdash) \xrightarrow{\vdash} (\mathbb{B}, \Rightarrow)
J \mapsto \vdash J
K \vdash L \Rightarrow (\vdash K \Rightarrow \vdash L) \frac{K}{L} \Rightarrow \left(\frac{\varnothing}{K} \Rightarrow \frac{\frac{\varnothing}{K}}{L}\right)
\left(\vdash \varnothing\right) = \top
\left(\vdash J_1 \cdots J_r\right) = \left(\vdash J_1\right) \times \cdots \times \left(\vdash J_r\right)$$

$$\begin{vmatrix} \frac{J_1 \cdots J_r}{I} \Rightarrow (\vdash J_1) \times \cdots \times (\vdash J_r) \Rightarrow (\vdash J) \end{vmatrix}$$

A Significant Problem

Deductive Systems and Boolean Logic

While the deductive process is confined to Boolean logic, it fails to benefit from its essential reasoning features.

	Deductive System		Real Life
⊢ _:	(\mathbb{J}, \vdash)	\longrightarrow	(\mathbb{B},\Rightarrow)
	\circ No structural $oldsymbol{\perp}$		 Contradiction
			$(\vdash J) \times (\vdash J \Rightarrow \bot) \Rightarrow \bot$
	$\circ (\vdash J \Rightarrow \bot) doesn't$		 Ex falso quod libet
	give $J \vdash K$ for all K		$\perp \Rightarrow \vdash K$
	∘ Can't derive $J \vdash K$		 Proof-based implication
	from $\vdash J \Rightarrow \vdash K$		$(\top \Rightarrow \vdash J) \Rightarrow (\top \Rightarrow \vdash K)$
			$\Leftrightarrow (\vdash J \Rightarrow \vdash K)$

Consequence: Some truth are send outside of the system:

$$\mathbb{J}(\emptyset, \underline{}) : \mathbb{J}(J, K) \to \mathbb{B}(\vdash J, \vdash K)$$

Formal Systems vs Internal Reasoning

Formal Systems Suffer from their External Interpretation

Notation	What It Is	What It Should Be
(J,⊢)	A Cartesian Poset	An Heyting Algebra Object
	$-\vdash -: J^{op} \times J \to \mathbb{B}$	$_\vdash_: \mathbb{J}^{\mathrm{op}} \times \mathbb{J} \to \mathbb{J}$
	A Truth Value	The Same Judgment
⊢ <i>J</i>	$J:\mathbb{J}\Rightarrow \vdash J:\mathbb{B}$	$J: \mathbb{J} \Rightarrow (\top \vdash J) \simeq J: \mathbb{J}$
	$\emptyset \vdash _: J \rightarrow \mathbb{B}$	$\top \vdash _ : \mathbb{J} \xrightarrow{Id} \mathbb{J}$
Ø or ⊤	The Empty Judgment	The Terminal Object
	$(J \vdash \varnothing)$	$(J \vdash \top) \simeq \top : \mathbb{J}$
Τ	It Can Be Introduced	The Initial Object
	$(\bot \vdash J)$?	$(\bot \vdash J) \simeq \top : \mathbb{J}$
	It Can Be Defined	Structural Negation
J^{\perp}	e.g. $J^{\perp} \coloneqq (J \to \bot) : \mathbb{J}$	$-\vdash \bot : J^{\mathrm{op}} \to J$
		$(J \vdash K) \vdash (K^{\perp} \vdash J^{\perp})$
$(\vdash J)^{\perp}$?	True
$\Leftrightarrow \vdash J^{\perp}$		$(\vdash J)^{\perp} \Leftrightarrow J^{\perp} \Leftrightarrow \vdash J^{\perp}$

Formal Systems vs Internal Reasoning

Formal Systems Suffer from the External Interpretation

Notation	What It Is	What It Should Be
(\mathbb{J}, \vdash)	A Cartesian Poset	An Heyting Algebra Object
	$_\vdash_:\mathbb{J}^{\mathrm{op}}\times\mathbb{J}\to\mathbb{B}$	$_\vdash_: \mathbb{J}^{\mathrm{op}} \times \mathbb{J} \to \mathbb{J}$
$\vdash J \times \vdash J^{\perp}$	A Truth Value	Structurally False
	consistence	$(\vdash J) \times (J \vdash \bot) \vdash \bot$
J ⊢ K	A Truth Value	A Judgment
	derivable rules	$J \vdash K : \mathbb{J}$
$\vdash J \Rightarrow \vdash K$	Another Truth Value	The Same Judgment
	admissible rules	$(\vdash J) \vdash (\vdash K) \simeq J \vdash K$

NB The notion of fixed point does not make sense for internal negation

$$(_)^{\perp}: \mathbb{J}^{\mathrm{op}} \to \mathbb{J}$$

Formal Systems: Key Weaknesses

An Invitation to Internal Reasoning

Intrinsic Structural Shortcomings

- No built-in Heyting algebra structure
- Exclusively deductive: lacks hypothetical reasoning
- Admissible rules are externally valid but internally invalid

Syntactic and Structural Overhead

- Proliferation of implication symbols: $-, \vdash, \models, \Rightarrow, \rightarrow, \vdash$
- Tedious formalization

Expressiveness Limitations

- Ultimately reduces to boolean classic logic (if), then, and.
- Cannot express intermediate values of derivability

From Denotation to Meaning by Substitution

Statements and Truth Values

We want to assign a meaning to combinations of symbols.

Expression := Combination of symbols.

Statement := Expression assigned with a **meaning**.

Meaning := Meaningful combination of meaningful expressions.

Meaningful := Assigned with a truth value.

Truth Value := Possible value for the evaluation of a statement.

Meaning assignment

```
( some expr ) := ( some meaningful comb of meaningful exprs )
```

Objective

Determine the **truth value** of statements.

Evaluation

The evaluation process stops at truth values:

The value of a truth value is itself.

In this talk, statements are evaluated as either \bot or \top .

Conjunction, Implication and Proof

Truth Tables

_ ⇒ _	1	Т	_ × _	1	Т
1	Τ	Т	Τ	1	\perp
Т	1	Т	Т	1	Т

Also write:

- $\mathbb{B}(x,y) \coloneqq x \Rightarrow y$
- $x \Leftrightarrow y \coloneqq (x \Rightarrow y) \times (y \Rightarrow x)$

Note that
$$\mathbb{B}(x, y_1 \times y_2) \Leftrightarrow \mathbb{B}(x, y_1) \times \mathbb{B}(x, y_2)$$

- Truth values are identified by their proof.
- True has proof.
- False has no proof
- (Maybe has maybe a proof.)

Conjunction, Implication and Proof

Truth Tables

_ ⇒ _	Τ	Т	_ × _	1	Т
Τ	Т	Т	Τ	1	\perp
Т	Τ	Т	Т	1	Т

Also write:

- $\mathbb{B}(x,y) \coloneqq x \Rightarrow y$
- $\bullet \ x \Leftrightarrow y \coloneqq (x \Rightarrow y) \times (y \Rightarrow x)$

Note that
$$(\mathbb{B}(x, y_1 \times y_2) \Leftrightarrow \mathbb{B}(x, y_1) \times \mathbb{B}(x, y_2)) = T$$

- Truth values are identified by their proof.
- True has proof.
- False has no proof
- (Maybe has maybe a proof.)

Conjunction, Implication and Proof

Truth Tables

_ ⇒ _	Τ	Т	_ × _	Τ	Τ
Τ	Т	Т	Τ	Τ	Τ
Т	Τ	Т	Т	Τ	Τ

- Also write: $\mathbb{B}(x,y) := x \Rightarrow y$ $x \Leftrightarrow y := (x \Rightarrow y) \times (y \Rightarrow x)$

Note that
$$(\mathbb{B}(x, y_1 \times y_2) \Leftrightarrow \mathbb{B}(x, y_1) \times \mathbb{B}(x, y_2)) = T$$

- Truth values are identified by their proof.
- (True has proof) is true
- (False has proof) is false

Conjunction, Implication and Proof

Truth Tables

_ ⇒ _	Τ	Τ	_ × _	Τ	Т
Τ	Т	Т	1	Τ	Τ
Т	Τ	Τ	Т	Τ	Т

- Also write: $\mathbb{B}(x,y) := x \Rightarrow y$ $x \Leftrightarrow y := (x \Rightarrow y) \times (y \Rightarrow x)$

Note that
$$(\mathbb{B}(x, y_1 \times y_2) \Leftrightarrow \mathbb{B}(x, y_1) \times \mathbb{B}(x, y_2)) = T$$

- Truth values are identified by their proof.
- (True has proof) := true
- (False has proof) := false

Conjunction, Implication and Proof

Truth Tables

_ ⇒ _	1	Т	_ × _	1	Т
Τ	Т	Т	Τ	Τ	Τ
Т	1	Т	Т	1	Т

Also write:

- $\mathbb{B}(x,y) := x \Rightarrow y$ $x \Leftrightarrow y := (x \Rightarrow y) \times (y \Rightarrow x)$

Note that
$$(\mathbb{B}(x, y_1 \times y_2) \Leftrightarrow \mathbb{B}(x, y_1) \times \mathbb{B}(x, y_2)) = T$$

- Truth values are identified by their proof.
- $(\top$ has proof $) := \top$
- (\bot has proof) := \bot

Conjunction, Implication and Proof

Truth Tables

_ ⇒ _	Τ	Т	_ × _	Τ	Т
Τ	Т	Т	Τ	Τ	Τ
Т	1	Т	Т	1	Т

- Also write: $\mathbb{B}(x,y) := x \Rightarrow y$ $x \Leftrightarrow y := (x \Rightarrow y) \times (y \Rightarrow x)$

Note that
$$(\mathbb{B}(x, y_1 \times y_2) \Leftrightarrow \mathbb{B}(x, y_1) \times \mathbb{B}(x, y_2)) = T$$

- Truth values are identified by their proof.
- $(\gamma:T) := T$ $(\beta:\bot) := \bot$

Conjunction, Implication and Proof

Truth Tables

_ ⇒ _	\dashv	Т	_ × _	1	Т
Τ	Т	Т	1	Τ	Τ
Т	Τ	Т	Т	Τ	Т

Also write:

Also write:
•
$$\mathbb{B}(x,y) := x \Rightarrow y$$

• $x \Leftrightarrow y := (x \Rightarrow y) \times (y \Rightarrow x)$

Note that
$$(\mathbb{B}(x, y_1 \times y_2) \Leftrightarrow \mathbb{B}(x, y_1) \times \mathbb{B}(x, y_2)) = T$$

Proof and Truth

- Truth values are identified by their proof.
- \bullet $(\gamma:\top):=\top$
- $(\beta:\bot) := \bot$

Consequences

- We say that a statement is true if it has a proof.
- Implication is determined by its behaviour on proofs
- A proof of a product consists of a proof of each factors.

Conjunction, Implication and Proof

Truth Tables

_ ⇒ _	\dashv	Т	_ × _	\dashv	Τ
1	Т	Т	1	Τ	\perp
Т	1	Т	Т	1	Т

•
$$\mathbb{B}(x,y) \coloneqq x \Rightarrow y$$

Also write:
•
$$\mathbb{B}(x,y) \coloneqq x \Rightarrow y$$

• $x \Leftrightarrow y \coloneqq (x \Rightarrow y) \times (y \Rightarrow x)$

Note that
$$(\mathbb{B}(x, y_1 \times y_2) \Leftrightarrow \mathbb{B}(x, y_1) \times \mathbb{B}(x, y_2)) = T$$

Proof and Truth

- Truth values are identified by their proof.
- \bullet $(\gamma:\top):=\top$
- $(\beta:\bot):=\bot$

Consequences

- P is true $\Leftrightarrow p: P \Leftrightarrow P \Leftrightarrow \mathbb{B}(\top, P)$
- $\nu : \mathbb{B}(P,Q) \Leftrightarrow (p:P \Rightarrow \nu p:Q)$
- $\nu: P \times Q \Leftrightarrow (\nu_P: P) \times (\nu_Q: Q)$

Internalizing Typing Judgments

Overview of the Strategy

The objects X that we first consider are equipped with a predicate $(-:X): \mathbb{V} \to \mathbb{B}$.

- (_:X) maps a variable x to a truth value (x:X), which we regard as "x is an element of type X".
- \bullet The object $\mathbb{V} \to \mathbb{B}$ is itself equipped with a predicate

$$\underline{}: \mathbb{V} \to \mathbb{B}$$
, which to $P: \mathbb{V}$ associates $P: \mathbb{V} \to \mathbb{B} :=$

-
$$(x: \mathbb{V}) \Rightarrow Px: \mathbb{B}$$

$$-x,y:\mathbb{V}\Rightarrow ((x=_{\mathbb{V}}y)\Rightarrow Px\Leftrightarrow Py)$$

• By substitution of P by $(_:X)$, we obtain

$$(-:X):\mathbb{V}\to\mathbb{B}\Leftrightarrow\mathbb{B}$$

$$-(x:\mathbb{V})\Rightarrow (x:X):\mathbb{B}$$

$$-x,y: \mathbb{V} \Rightarrow ((x=_{\mathbb{V}} y) \Rightarrow (x:X) \Leftrightarrow (y:X))$$

- This predicate should be seen as a type constructor...
- ... hence a way to construct, or *define* elements of X.
- An element of X is a variable x equipped with a proof def_x^X: (x:X).

The Definition

Objects. $_: CAT_n : V \to \mathbb{B}$

Interpretation

An *n*-category *X* consists of

- Objects: A truth value (x : X) depending on a variable symbol
 x : V, which gives a way for x to be defined as an element of X.
- Morphisms: An (n-1)-category X(x,y) for each elements x,y:X, together with additional structure promoting this mapping to an n-functor $X(_,_)$.

Objective

Provide this sentence with a meaning.

First Observations

$$(_: \operatorname{CAT}_n): \mathbb{V} \to \mathbb{B}$$

Objective

Assign the right hand side with meaning.

Method

- Assign each line with a truth value.
- The result is obtained by conjunction.

Steps

- $Y : CAT_n \Rightarrow Y^{op} : CAT_n$
- $\bullet \quad Y,Z: \mathrm{CAT}_n \quad \Rightarrow \quad Y\times Z: \mathrm{CAT}_n$
- $Y, Z : CAT_n \Rightarrow CAT_n(Y, Z) : CAT_n$

Proceed by induction to avoid circularity. Then:

$$\operatorname{CAT}_n(Y, Z) : \operatorname{CAT}_n \Rightarrow _ : \operatorname{CAT}_n(Y, Z) : \mathbb{V} \to \mathbb{B}$$

• $CAT_{n-1}: CAT_n$

First Observations

$$(_: \operatorname{CAT}_n): \mathbb{V} \to \mathbb{B}$$

$$\begin{array}{ccccc} (\boldsymbol{X}: \mathrm{CAT}_n) \coloneqq & - & (_: \boldsymbol{X}) & : & \mathrm{CAT}_0(\mathbb{V}, \mathbb{B}) \\ & - & \boldsymbol{X}(_, _) & : & \mathrm{CAT}_n(\boldsymbol{X}^\mathrm{op} \times \boldsymbol{X}, \mathrm{CAT}_{n-1}) \end{array}$$

Objective

Assign the right hand side with meaning.

Method

- Assign each line with a truth value.
- The result is obtained by conjunction.

Steps

- $Y : CAT_n \Rightarrow Y^{op} : CAT_n$
- $\bullet \quad Y,Z: \mathrm{CAT}_n \quad \Rightarrow \quad Y\times Z: \mathrm{CAT}_n$
- $Y, Z : CAT_n \Rightarrow CAT_n(Y, Z) : CAT_n$

Proceed by induction to avoid circularity. Then:

$$\operatorname{CAT}_n(Y,Z):\operatorname{CAT}_n\Rightarrow _:\operatorname{CAT}_n(Y,Z):\mathbb{V}\to\mathbb{B}$$

• $CAT_{n-1}: CAT_n$

Opposite

The opposite X^{op} of $X : CAT_n$ is constructed inductively as follows:

- $\underline{}:X^{\mathrm{op}}:=\underline{}:X$
- $x, y : X^{\text{op}} \Leftrightarrow x, y : X \Rightarrow X^{\text{op}}(x, y) := X(y, x) : \text{CAT}_{n-1}$
- Obtain $X^{\text{opop}} \xrightarrow{\simeq} X$ from $X^{\text{opop}}(x,y) = X^{\text{op}}(y,x) = X(x,y)$

$$X^{\operatorname{op}}(_,_): X^{\operatorname{opop}} \times X^{\operatorname{op}} \xrightarrow{\simeq} X \times X^{\operatorname{op}} \xrightarrow{\tau} X^{\operatorname{op}} \times X^{\operatorname{opop}} \xrightarrow{X(_,_)} \operatorname{Cat}_{n-1}$$

Remark

The oppositization is made functorial by using higher oppositization functors

$$_^{op_r}: \operatorname{CAT}_n^{op_{r+1}} \to \operatorname{CAT}_n$$

 X^{op_r} is such that $x: X^{op_r} \Leftrightarrow x: X$ and $X^{op_r}(x,y) := X(x,y)^{op_{r-1}}$

Products

The product $X \times Y$ of $X, Y : CAT_n$ is defined inductively as

-
$$p: X \times Y \Leftrightarrow (p_X: X, p_Y: Y)$$

$$-p,q:X\times Y \Rightarrow X\times Y(p,q):CAT_n$$

$$| X \times Y(p,q) \coloneqq X(p_X,q_X) \times Y(p_Y,q_Y)$$

$$(X \times Y)^{\text{op}} \times X \times Y \xrightarrow{\simeq} X^{\text{op}} \times Y^{\text{op}} \times X \times Y \xrightarrow{\simeq} X^{\text{op}} \times X \times Y^{\text{op}} \times Y$$

$$\downarrow^{X(-,-) \times Y(-,-)}$$

$$CAT_n \times CAT_n$$

$$\downarrow^{\times}$$

$$CAT_n$$

By construction, $X \times Y$ is equipped with morphisms in CAT_n

•
$$\pi_X: X \times Y \to X$$

•
$$\pi_Y: X \times Y \to Y$$

Products

By construction, $X \times Y$ is equipped with morphisms in CAT_n

- $\pi_X: X \times Y \to X$
- $\pi_Y: X \times Y \to Y$

The product yields

$$\times : \operatorname{CAT}_n \times \operatorname{CAT}_n \to \operatorname{CAT}_n$$

and satisfies the universal property

$$\operatorname{CAT}_n(_, X \times Y) \simeq \operatorname{CAT}_n(_, X) \times \operatorname{CAT}_n(_, Y)$$

First levels

 $\mathbb{B}: \mathrm{Cat}_0$

Notation

$$\alpha := \operatorname{CAT}_{-2-1}$$

$$\top := \operatorname{CAT}_{-1-1}$$

$$\mathbb{B} := \operatorname{CAT}_{0-1}$$

- First recall that $\gamma : \mathbb{B} \Rightarrow \mathbb{B}(\gamma, \top) = \top$
- By substitution of n by -1 in $(\tau : CAT_n)$:

$$\begin{array}{ccccc} (\tau:\mathbb{B}) & \stackrel{\mathrm{def}}{\Leftrightarrow} & - & (_:\tau) & : & \mathbb{V} \to \mathbb{B} \\ & - & \tau(_,_) & : & \mathbb{B} \left(\tau^{\mathrm{op}} \times \tau, \top\right) \end{array}$$

First levels

 $\mathbb{B}: \mathrm{Cat}_0$

Notation

$$\alpha := \operatorname{CAT}_{-2-1}$$

$$\top := \operatorname{CAT}_{-1-1}$$

$$\mathbb{B} := \operatorname{CAT}_{0-1}$$

- First recall that $\gamma : \mathbb{B} \Rightarrow \mathbb{B}(\gamma, T) = T$
- By substitution of n by -1 in $(\tau : CAT_n)$:

$$(\tau:\mathbb{B}) \iff \begin{array}{ccc} - & (_:\tau) & : & \mathbb{V} \to \mathbb{B} \\ - & \tau(_,_) & : & \top \end{array}$$

First levels

 $\mathbb{B}: \mathrm{Cat}_0$

Notation

$$\alpha \coloneqq \operatorname{CAT}_{-2-1}$$

$$\top \coloneqq \operatorname{CAT}_{-1-1}$$

$$\mathbb{B} \coloneqq \operatorname{CAT}_{0-1}$$

- First recall that $\gamma : \mathbb{B} \Rightarrow \mathbb{B}(\gamma, \top) = \top$
- By substitution of n by -1 in $(\tau : CAT_n)$:

$$(\tau:\mathbb{B}) \iff (_:\tau):\mathbb{V}\to\mathbb{B}$$

Notation

$$\alpha := \operatorname{CAT}_{-2-1}$$

$$\top := \operatorname{CAT}_{-1-1}$$

$$\mathbb{B} := \operatorname{CAT}_{0-1}$$

- First recall that $\gamma : \mathbb{B} \Rightarrow \mathbb{B}(\gamma, \top) = \top$
- By substitution of n by -1 in $(\tau : CAT_n)$:

$$(\tau:\mathbb{B}) \iff (\underline{}:\tau):\mathbb{V}\to\mathbb{B}$$

• By substitution of n by 0 in $(\mathbb{B}: CAT_n)$:

$$\mathbb{B}: \mathrm{CAT}_0 \iff \begin{array}{ccc} - & (_:\mathbb{B}) & : & \mathbb{V} \to \mathbb{B} \\ - & \mathbb{B}(_,_) & : & \mathbb{B}^{\mathrm{op}} \times \mathbb{B} \to \mathbb{B} \end{array}$$

$$CAT_n(X, Y) : CAT_n$$

Objective
$$X, Y : CAT_n \Rightarrow CAT_n(X, Y) : CAT_n$$

By Definition We need to show the following:

- $(\underline{} : \operatorname{CAT}_n(X, Y)) : \mathbb{V} \to \mathbb{B}$
- $\operatorname{CAT}_n(X,Y)(_,_)$: $\operatorname{CAT}_n(X,Y)^{\operatorname{op}} \times \operatorname{CAT}_n(X,Y) \to \operatorname{CAT}_{n-1}$

First Step

$$F: \operatorname{CAT}_{n}(X, Y) := \\ - x: X \Rightarrow Fx: Y \\ - F(_, _): \int_{-X^{\operatorname{op}} \times X} \operatorname{CAT}_{n-1}(X(x, y), Y(Fx, Fy))$$

The end is defined by universal property and encodes naturality. Its elements can be constructed inductively

$$\begin{array}{lll} - & x,y:X & \Rightarrow & F(x,y):X(x,y)\to Y(Fx,Fy) \\ - & x_1,x_2,y_1,y_2:X & \Rightarrow & F_{x_1,x_2,y_1,y_2}^{(2)}:\int_{x_1,x_2,y_1,y_2}^{f_x:X^{\mathrm{op}}(x_1,x_2),f_y:X(y_1,y_2)}... \end{array}$$

$$CAT_n(X, Y) : CAT_n$$

Objective
$$X, Y : CAT_n \Rightarrow CAT_n(X, Y) : CAT_n$$

First Step

$$F: \operatorname{CAT}_{n}(X, Y) := \\ - x: X \Rightarrow Fx: Y \\ - F(_, _): \int^{X^{\operatorname{op}} \times X} \operatorname{CAT}_{n-1}(X(x, y), Y(Fx, Fy))$$

The end is defined by universal property and encodes naturality. Its elements can be constructed inductively

$$\int_{X^{\text{op}} \times X} \text{CAT}_{n-1} (X(x, y), Y(Fx, Fy))$$

$$\simeq [X^{* \text{op}} \times X^{*}, \text{CAT}_{n-1}] (X^{*}(_, _), \text{CAT}_{n-1} (X(_, _), Y(F_, F_)))$$

$$\simeq \int_{X^{* \text{op}} \times X^{*}} \text{CAT}_{n-1} (X^{*}(_, _), \text{CAT}_{n-1} (X(_, _), Y(F_, F_)))$$

 $CAT_n(X, Y) : CAT_n$

Objective
$$X, Y : CAT_n \Rightarrow CAT_n(X, Y) : CAT_n$$

First Step

$$\begin{split} F: & \operatorname{CAT}_n(X,Y) \coloneqq \\ & - x: X & \Rightarrow Fx: Y \\ & - F(_,_): \int^{X^{\operatorname{op}} \times X} & \operatorname{CAT}_{n-1}\left(X(x,y), Y(Fx, Fy)\right) \end{split}$$

The end is defined by universal property and encodes naturality. Its elements can be constructed inductively

-
$$x, y : X$$
 \Rightarrow $F(x, y) : X(x, y) \rightarrow Y(Fx, Fy)$

$$-x_1, x_2, y_1, y_2: X \Rightarrow F_{x_1, x_2, y_1, y_2}^{(2)}: \int_{x_2}^{f_x: X^{op}(x_1, x_2), f_y: X(y_1, y_2)}$$

$$CAT_{n-1}(X(x_1, y_1), Y(Fx_2, Fy_2)) (F(x_2, y_2)X(f_x, f_y), Y(F(x_1, x_2)f_x, F(y_1, y_2)f_y)F(x_1, x_2))$$

The degree decreases at each step hence it stops at $F^{(n)}$

$$Cat_n(X,Y): Cat_n$$

Natural Transformations

Objective
$$X, Y : CAT_n \Rightarrow CAT_n(X, Y) : CAT_n$$

By Definition We need to show the following:

- $(_: \operatorname{CAT}_n(X, Y)) : \mathbb{V} \to \mathbb{B}$
- $\operatorname{CAT}_n(X,Y)(_,_)$: $\operatorname{CAT}_n(X,Y)^{\operatorname{op}} \times \operatorname{CAT}_n(X,Y) \to \operatorname{CAT}_{n-1}$

Second Step

- $F, G : \operatorname{CAT}_n(X, Y) \Rightarrow \operatorname{CAT}_n(X, Y)(F, G) : \operatorname{CAT}_{n-1}$ $\operatorname{CAT}_n(X, Y)(F, G) := \int_{X}^{X:X} Y(FX, GX)$
- $F_1, G_1, F_2, G_2 : \operatorname{CAT}_n(X, Y) \Rightarrow$

$$\begin{split} & \operatorname{CAT}_n(X,Y)^{\operatorname{op}}(F_1,G_1) \times \operatorname{CAT}_n(X,Y)(F_2,G_2) \\ & \to \operatorname{CAT}_n\left[\operatorname{CAT}_n(X,Y)(F_1,F_2), \operatorname{CAT}_n(X,Y)(G_1,G_2) \right] \end{split}$$

Straightforward consequence of the structure of *Y*

Back to the Definition

 $CAT_n(_,_): CAT_n^{op} \times CAT_n \to CAT_n$

Objective $CAT_n : CAT_{n+1}$

By Definition We need to show the following:

- $(_: \operatorname{CAT}_n)$: $\mathbb{V} \to \mathbb{B}$ - $\operatorname{CAT}_n(_,_)$: $\operatorname{CAT}_n^{\operatorname{op}} \times \operatorname{CAT}_n \to \operatorname{CAT}_{n+1-1}$

Last Step

Promote to an n + 1-functor $X, Y : CAT_n \Rightarrow CAT_n(X, Y) : CAT_n$

 $\operatorname{CAT}_n^{\operatorname{op}}(X_1, Y_1) \times \operatorname{CAT}_n(X_2, Y_2) \to \operatorname{CAT}_n(\operatorname{CAT}_n(X_1, X_2), \operatorname{CAT}_n(Y_1, Y_2))$

 $f_1: Y_1 \to X_1, f_2: X_2 \xrightarrow{f_2} Y_2 \Rightarrow (X_1 \xrightarrow{f} X_2 \Rightarrow Y_1 \xrightarrow{f_1} X_1 \xrightarrow{f} X_2 \xrightarrow{f_2} Y_2)$

 $Y_1(y,z) \xrightarrow{f_1(y,z)} X_1(f_1y,f_1z) \xrightarrow{f(f_1y,f_1z)} X_2(ff_1y,ff_1z) \xrightarrow{f_2(f_2ff_1y,f_2ff_1z)} Y_2(f_2ff_1y,f_2ff_1z)$

CAT_0

Posets and order preserving maps

An element of CAT_0 correspond to a poset:

$$P: \mathrm{CAT}_0 \Leftrightarrow \begin{array}{ccc} - & (_:P) & : & \mathbb{V} \to \mathbb{B} \\ - & P(_,_) & : & P^\mathrm{op} \times P \to \mathbb{B} \end{array}$$

- The naturality of the structural map corresponds to transitivity
- Maps between poset inherit a poset structure

Poset maps

$$(P, Q: CAT_0) \Rightarrow CAT_0(P, Q): CAT_0$$

Explicitly

•
$$(f: P \rightarrow Q) := - \quad x: P \Rightarrow fx: Q$$

- $p, q: P \Rightarrow (f(p,q): P(p,q) \Rightarrow Q(fp, fq))$

•
$$(f,g:P\to Q)\Rightarrow \operatorname{CAT}_0(P,Q)(f,g):=\int^{x:P}Q(fx,gx):\mathbb{B}$$

where $\alpha:\int^{x:P}Q(fx,gx)\Leftrightarrow (x:P\Rightarrow\alpha_x:Q(fx,gx))$

Example

The Poset of Natural Numbers

We let $_: \mathbb{N} : \mathbb{V} \to \mathbb{B}$ be defined as $- (0: \mathbb{N}) \coloneqq \mathsf{T},$ $- (x: \mathbb{N} \Rightarrow x+1: \mathbb{N})$ We let $\mathbb{N}(_,_) : \mathbb{N}^{\mathrm{op}} \times \mathbb{N} \to \mathbb{B}$ be induced by $- \mathbb{N}(x,x+1) \coloneqq \mathsf{T},$

Sets

We define a **set** as a **poset with additional structure**.

$$(X:\operatorname{Set})\coloneqq (X:\operatorname{Cat}_0)\times (X\xrightarrow{\simeq} X^{\operatorname{op}})$$

which means $x, y : X \Rightarrow (X(x, y) \Leftrightarrow X(y, x))$. We also write x = y

Maps

A map $f: X \to Y$ between sets is given by

- $x: X \Rightarrow fx: Y$
- $x, y : X \Rightarrow (x = y \Rightarrow fx = fy)$

The Set of Maps

Suppose $f, g: X \to Y$ are maps between sets. Equality is defined as

$$(f = g) := \int_{-\infty}^{\infty} (fx = fy) : \mathbb{B}$$

Sets

The Poset of Subsets of a Set

The structural map of a set X yields

$$X \to \operatorname{CAT}_0(X^{\operatorname{op}}, \mathbb{B}) =: \mathcal{P}X$$

The Category of Sets

Satisfies all axioms of ETCS.

Quotients

Are very easy to define: suppose $R(_,_): X^{op} \times X \to \mathbb{B}$.

- Same objects: $(_:X/R) := (_:X)$
- Define equality: X/R(x,y) := R(x,y)

A map $X/R \to Y$ precisely corresponds to a map $f: X \to Y$ such that $R(x,y) \Rightarrow fx = fy$.

Equivalences

A Recursive Definition

Let $F: X \to Y$ be a map in CAT_n . We say that

• F is a 0-equivalence if

$$(y:Y\Rightarrow (F^*y:X)\times (e_y:Y(FF^*y,y)\times Y(y,FF^*y))$$

• F is an r-equivalence if F is a 0-equivalence and (F, F^*, e) yields an r-1 equivalence

$$x, y: X \Rightarrow F(x, y): X(x, y) \rightarrow Y(Fx, Fy)$$

which is natural in x, y.

$$X(x,y) \longrightarrow F(x,y) \longrightarrow Y(Fx,Fy)$$

$$F^*Fx \xrightarrow{F^*f} F^*Fy$$
 $Fx \xrightarrow{f} Fy$
 $e_{Fx} \downarrow \qquad \qquad \downarrow e_{Fy}$
 $FF^*Fx \xrightarrow{FF^*f} FF^*Fy$

Equivalences

Let $F: X \to Y$ be a map in CAT_n .

- We say that F is an equivalence is it is an n+1-equivalence.
- We obtain an *n*-category of equivalences $CAT_n(X, Y)^{\sim}$

In Sets

- 0-equivalences correspond to surjective maps
- 1-equivalences correspond to isomorphisms

Axiom of Choice

- Does not hold: consider a quotient map $\pi: X \to X/R$.
- It is 0-equivalence: $x: X/R \Leftrightarrow x: X$.
- It does not satisfy $X/R(x,y) = R(x,y) \Rightarrow X(x,y)$ unless it is trivial

In Cat

- 0-equivalences: essentially surjective functors.
- 1-equivalences: full and essentially surjective.
- 2-equivalences: fully faithful and essentially surjective.

Identity, Undiscernability and Equality

The Shadow of Sets

Philosophy

Equality makes sens within a set.

Objects of a category can only be distinguished up to isomorphism. Objects of an n-category can only be distinguished up to equivalence.

How to define sameness?

If I define X := expression

then I want X and expression to refer to the same thing in a sense that is stronger than equivalence.

Literal Equality

Literal symbols form a set. We regard a definition as a process that introduces a literal equality between X and expression.

In Type Theory

Literal equality corresponds to the definitional equality.

in CAT_{n+1}

$$\Pi: \operatorname{CAT}_n \leftrightharpoons I \operatorname{CAT}_{n-1}: I$$

$$X: \operatorname{CAT}_n \Rightarrow \Pi X: \operatorname{CAT}_{n-1}$$

-
$$\pi x : \Pi X \Leftrightarrow x : X$$

-
$$x, y: X \Rightarrow \Pi X(x, y) := \Pi (X(x, y)) : CAT_{n-2}$$

$$X: \mathbf{Set} \Rightarrow \Pi X: \mathbb{B}$$

Is false if X is empty and true else.

$$X: CAT_n \Rightarrow IX : CAT_{n+1}$$

-
$$\iota x : IX \Leftrightarrow x : X$$

-
$$x, y : X \Rightarrow IX(\iota x, \iota y) := I(X(x, y)) : CAT_{n-2}$$

$$\tau: \mathbb{B} \Rightarrow I\tau: Set$$

$$I = \emptyset$$
 and $I = *$

Small Objects

An object $X : CAT_n$ is r-small if it is equipped with

- An object $X_r : CAT_r$
- An r-equivalence $I^{n-r}X_r \to X$

We write $X : CAT_n^{(r)}$ for an *r*-small objects in CAT_n .

- We have a notion of *r*-small functors between *r*-small objects.
- r-small objects, together with r-small functors, form an r+1-small n-category $\operatorname{CAT}_n^{(r)}:\operatorname{CAT}_n^{(r+1)}$
- Hence $CAT_n^{(r)}$ has an underlying r + 1-category $Cat_n^{(r)} : CAT_{r+1}$

Small objects in CAT

- 0-small categories are categories equipped with an equality relation on the objects - underlying set of objects.
- 0-small functors are strict functors.
- We obtain a category of small categories and strict functors.

$$CAT_{\omega}: CAT_{\omega+1}$$

We say that X is an ω -category and we write $X: \mathrm{Cat}_{\omega}$ if

$$\begin{split} n: \mathbb{Z} & \Rightarrow & - & X_{(n)}: \mathrm{CAT}_n \\ & - & \Pi_n^X: X_{(n+1)} \rightleftarrows I_{n+1} X_{(n)}: I_{n+1}^X \end{split}$$

Theorem

$$Cat_{\omega}: Cat_{\omega+1}$$

Idea

- $(CAT_{\omega})_{(n)} := CAT_n : CAT_{n+1}$
- $\Pi : CAT_{n+1} \leq ICAT_n : I$

Remark

$$ICAT_{\omega} \simeq CAT_{\omega+1}$$

Homotopy Type Theory

Interpretation

Going further

Generalized truth values

Idea

Work with a different cartesian closed poset for truth values.

Example

Let \mathbb{B}^+ with

$$\perp \Rightarrow + \Rightarrow \top$$

Maybe is that which may have proof. The arrows which are written correspond to the elements in the morphisms:

- $\mathbb{B}^+(\bot,+) = \top$ $\mathbb{B}^+(\top,+) = +$ $\mathbb{B}^+(\top,\bot) = \bot$
- $\mathbb{B}^+(+,\top) = \top$ $\mathbb{B}^+(+,\bot) = +$ $\mathbb{B}^+(+,\bot) = \bot$

The arrows that may be can be represented as dotted arrows:

$$\bot \rightarrow + \rightarrow \top$$

• Objects at level 0 in the corresponding structure have potential elements that may or may not

Generalizations

Formalization

We can work formally within a hierarchy of *n*-types $\mathbb{T}_n : \mathbb{T}_{n+1}$

satisfying
$$(X:\mathbb{T}_n):=-(_:X):\mathbb{V}\to\mathbb{B}$$

$$-X(_,_):X^{\mathrm{op}}\times X\to \mathbb{T}_{n-1}$$

Example

$$\begin{split} & \operatorname{CAT}_n^{\mathbb{N}} : \operatorname{CAT}_{n+1}^{\mathbb{N}} \\ & X : \operatorname{CAT}_n^{\mathbb{N}} \Rightarrow X(_,_) : X^{\operatorname{op}} \times X \to \operatorname{CAT}_{n-1}^{\mathbb{N}} & \text{in } \operatorname{CAT}_{n-1}^{\mathbb{N}} \\ & \text{given in } n \text{ by } X(n)(_,_) : X(n)^{\operatorname{op}} \times X(n) \to \operatorname{CAT}_{n-1} \end{split}$$

Encapsulating Mathematical Structures

The Nested Approach

Monoidal objects can be defined provided that they live in a bigger object that is itself equipped with a monoidal structure.

Monoidality

$$\begin{split} &\left(\mathrm{CAT}_{n},\times_{n}\right):\mathrm{Mon}_{\left(\mathrm{CAT}_{n+1},\times_{n+1}\right)}\\ &\mathrm{Mon}_{\left(\mathrm{CAT}_{n+1},\times_{n+1}\right)}\left(*_{n},\mathrm{CAT}_{n}\right)\simeq\mathrm{Mon}_{\left(\mathrm{CAT}_{n},\times_{n}\right)} \end{split}$$

Operads and Algebras

$$\left(\mathbb{T}_{n}, \otimes_{n}^{\mathbb{P}}\right) : \mathbb{P} ALG_{\left(\mathbb{T}_{n+1}, \otimes_{n+1}^{\mathbb{P}}\right)}$$

Key Features

This framework is very easy to work with.

- Compact.
- Strongly suited for inductive reasonning.
- Processes literal expressions directly into truth values.
- Avoids the final process of interpretation of the judgments as boolean truth values hence enables much more general logics.
- Provides more general notions of topos and higher structures.
- Encapsulates the nested nature of structures well. Strongly suited for higher structures.
- Is both computational and has an homotopical behaviour.
- The level of freedom in potential generalisations is high.
- It reflects the actual way we do mathematics.

Thanks

- Any remark: sophiedespalungue@gmail.com
- **Source:** d'Espalungue d'Arros, S. (2023). *Operads in 2-categories and models of structure interchange*. https://theses.hal.science/tel-04617115
- Further:
 - Formal Category Theory: Chapter 1
 - Formal Operad Theory: Chapter 2
 - Structure Interchange: Chapter 3
 - Foundations: Appendix